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Kraichnan’s (1 967) predictions concerning a simultaneous direct enstrophy 
cascade and inverse energy cascade for high Reynolds number two-dimensional 
turbulence are tested numerically using a variant of the eddy-damped quasi- 
normal approximation. For the initial-value problem, an analytic study using 
this theory shows that, in the zero-viscosity limit, energy and enstrophy are con- 
served for arbitrarily long times, contrary to the three-dimensional case, where 
the energy is conserved for only a finite time, after which it is dissipated. Non- 
local effects in the enstrophy inertial range, which are difficult to treat by con- 
vcntional numerical schemes (Leith 1971; Leith & Kraichnan 1972), are shown 
to be representable by an additional diffusion term in the spectral equation. The 
resulting equation, including non-local effects, is integrated numerically. When 
enstrophy and energy are continuously injected at  a fixed wavenumber, it  is 
shown numerically that a quasi-steady regime is obtained where enstrophy 
cascades to large wavenumbers across a inertial range with zero energy 
transfer while energy flows indefinitely to small wavenumbers across a it-* 
inertial range with zero enstrophy transfer. 

1. Introduction 
The essential feature of two-dimensional incompressible turbulence as opposed 

to three-dimensional turbulence is the conservation of the total enstrophy 
D(t)  = ( (curlu)2) for differentiable solutions of the inviscid Navier-Stokes equa- 
tions (Euler equations). As a consequence, it is not possible to generalize the 
Kolmogorov concept of an energy cascade from energy-containing eddies to small 

t The National Center for Atmospheric Research is sponsored by the National Science 
Foundation. 
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eddies, since such a cascade would increase the enstrophy. Nevertheless, owing 
to the conservation of enstrophy, the existence of an enstrophy cascade has been 
conjectured, where the energy spectrum E ( k ,  t )  follows a k-3 law (Kraichnan 
1967; Leith 1968; Batchelor 1969) possibly with a logarithmic correction 
(Kraichnan 1971 b) .  Kraichnan’s (1967) complete hypothesis assumes also the 
existence of an inverse k-8 energy cascade from energy-containing eddies to larger 
eddies. Enstrophy transfer towards large wavenumbers would then increase the 
‘ palinstrophy ’t 

P(t) = {(V2u)2) = {{curl (curlu))2> = (1.1) 

where E(k, t )  is defined by 

(uz((t)) =Im E ( k , t ) d k .  
0 

The conjecture of an enstrophy cascade appears to be relevant to atmospheric 
measurements (Wiin-Nielsen 1967; Morel & Necco 1973; Desbois 1975), since 
large-scale atmospheric motions are known to be quasi-two-dimensional. On the 
other hand, direct numerical simulations of two-dimensional turbulence carried 
out by Lilly (1969) and by Herring et al. (1974) seem to be consistent with the 
existence of an inverse energy cascade. However, the Reynolds numbers 
considered in these numerical simulations are rather small ( < 1000). Such 
Reynolds numbers are certainly too low to produce a clear-cut enstrophy inertial 
range. 

In order to study two-dimensional turbulence at  large Reynolds numbers, and 
particularly to decide whether an enstrophy cascade exists or not, it is convenient 
to make use of the stochastic models introduced by Kraichnan (1958,1961). The 
stochastic models are chosen so as to embody most of the structural properties 
of the Navier-Stokes equations and to lead to closed master equations for mean 
quantities. Since the existence of energy and enstrophy cascades seems to be 
closely related to the conservation of energy and enstrophy by the nonlinear 
terms of the Navier-Stokes equations and to the random Galilean invariance of 
the equations, a model having these properties seems most suitable. In  this paper, 
we shall work with a Markovian eddy-damped model of the class of those intro- 
duced by Leith (1971) and Herring & Kraichnan (1972). Such models are charac- 
terized by a time OkPq( t )  for the relaxation of triple correlations (Kraichnan 
1971 a; Frisch, Lesieur & Sulem 1974). Here we shall take for Bkpq(t) the following 
expression : 

with the eddy-damping rate pIc given by 

% J q ( t )  = t L l +  (Pk + P P  + P q )  tl? (1.2) 

where A is a constant which will be chosen to fit given values of Kolmogorov con- 
stants. In (1.2), s,,, is chosen in such a way that Okpq = t for small times and 

t From the Greek n d i v  (again) and V T ~ W ~  (rotation, curl). 
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8,, = (pk + p p  +pq)-l for large times.? Once an inertial range has been estab- 
lished a more local expression of the form ,#%k = vk2 + h’{k3E( k, t))b (Orszag 1970) 
would be as convenient; such an expression is however totally inadequate for 
short times and initially rapidly decreasing spectra: indeed ,uk would then be an 
exponentially decreasing function of k for moderately large wavenumbers and 
hence the relaxation time for triple correlations would be larger than the large 
eddy turnover time. Our expression has the advantage that it takes into account 
the strong non-localness of the enstrophy transfer, since it is known that in two- 
dimensional turbulence wavenumbers much smaller than k contribute substanti- 
ally to the shearing of wavenumbers - k (Kraichnan 1971 b). Also, it  can be shown 
(Herring, private communication) that expression ( I  .3) for the eddy-damping 
rate can be considered as an approximation to the eddy-damping rate given by 
the test-field model (Kraichnan 1971 a). 

It must be mentioned that several two-dimensional predictability studies, e.g. 
the study of the propagation of a perturbation in a given energy spectrum, have 
been made using stochastic models (Leith 1971; Leith & Kraichnan 1972; Herring 
1973). But the evolution of a given energy spectrum with or without external 
forces has never been computed for high Reynolds numbers, so that dynamical 
evidence is still lacking for the existence of the energy and enstrophy cascades. 
The methods used here are new in that they combine an accurate treatment of 
distant, diffusive interactions with strict energy and enstrophy conservation, all 
of which are necessary to obtain reliable large Reynolds number results. 

2. The absence of an enstrophy catastrophe 
The eddy-damped master equation for the energy spectrum E(k ,  t )  reads in the 

case of two-dimensional isotropic turbulence (Leith 197 1) 

x {kE(p,t)E(q,t)-pE(p,t)E(k,t))dpdp+P(k), (2.1) 

where the integration in the p ,  q plane extends over the domain A, such that 
k, p and q can be the three sides of a triangle. The coefficient b,(k,p, q)  is given by 

where x, y and z are the cosines of‘the interior angles of the (E,p, q)  triangle. P(k)  
is a forcing term which injects energy at  a wavenumber k,. In  this section P(k)  
will be taken equal to zero. 

It has been conjectured for three-dimensional isotropic turbulence that the 
existence of an energy cascade is the consequence of an energy catastrophe in the 
zero-viscosity limit (Onsager 1949; Proudman & Reid 1954; Brissaud et al. 1973), 

-f NoticethatLeith’s (1971) expression Sk&) = [l -exp{- ( r ~ ~ ~ + ( ~ ~ + ~ * ) t } ] l ( r ~ ~ $ r ~ , f r ~ ~ )  
for O,,, is not substantially different. We have chosen (1.2) to save computing time. 

20-2 
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lim c ( t )  = lim 2v 
v-0 v-+o 

where s( t )  is the energy viscous dissipation rate. In  three-dimensional turbulence, 
there is a finite rate of energy dissipation by an infinitesimal viscosity because 
the energy cascade process makes the enstrophy D(t) increase towards infinity 
in such a way that the product 

2vIom k2E(k, t )  dk 

remains different from zero in the limit v -+ 0. Furthermore, Orszag (1974) noted 
that the three-dimensional energy catastrophe would occur after a finite time, at 
which time the enstrophy would become infinite. This conjecture has been 
analytically and numerically verified (Brissaud et al. 1973) using the three- 
dimensional Markovian random coupling model, where S,,,, is set equal to a 
constant (Frisch, Lesieur & Brissaud 1974). 

For two-dimensional turbulence, there is obviously no possibility of an energy 
catastrophe, since the constraint of enstrophy conservation imposes in (2.3) 
a zero limit on &(t) when v -+ 0. But from the hypothesis of an enstrophy cascade 
one is quite naturally led to examine the possibility of an enstrophy catastrophe 
(Batchelor 1969): 

lim/3(t) = lim 2v PE(k , t )  dk $. 0. (2.4) 
v - t o  v+o /Om 

However, we shall show that within the framework of the eddy-damped quasi- 
normal approximation the limit (2.4) remains zero for arbitrarily large times. 
This result, conjectured on a phenomenological basis by Orszag (1974), can be 
demonstrated analytically without any restriction on BkpQ(t) other than that it 
should be bounded by t. In  particular, this result holds for the test-field model 
(ICraichnan 1971 a).  Indeed the equation for the rate of change of the palinstrophy 
(we put the forcing equal to zero, which in the present case is irrelevant) reads 

where B(p, q)  is given by 

Equations (2.5) and (2.6) can be established following the lines of the calculation 
made by Lilly (1971) in the case of the quasi-normal theory. In  ( 2 . 6 ) ,  as the 
integrand is always positive and 6,,.p,(t) is bounded by t ,  we have 

The integral in (2.7) is equal to an for q/p < 1 and &np2/q2 for qlp > 1, so that 
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B(p, q) can be further bounded by 

Inserting (2.8) in (2.5) we finally get 

Since D(t) < D(O), we can write 

which shows that at  any finite time the palinstrophy remains finite and hence 
lim ,8(t) = 0. There is no enstrophy catastrophe. 

In  addition to this calculation, an argument can be given to suggest that there 
is no need for an enstrophy catastrophe occurring after a finite time. In  the steady 
regime, when there is a constant enstrophy injection rate, the enstrophy spectrum 
is N k-1 towards large k, possibly with a logarithmic correction (see next section); 
in any case, the total enstrophy diverges for large k, so that it is not necessary to  
extract enstrophy by a catastrophe to maintain steadiness. Notice also that, if 
this no-catastrophe result is true for the original two-dimensional Euler equa- 
tions,? then it probably implies that intermittency cannot steepen the power law 
of the energy spectrum in the enstrophy cascade, since a steepening of the energy 
spectrum by intermittency would make the total enstrophy converge for large k, 
thus requiring a catastrophe to extract the injected enstrophy (Frisch, private 
communication). 

v+o 

3. The non-localness of enstrophy transfer 
The numerical method used for the calculation of double integrals over wave- 

numbers in ( 2 . 1 )  is essentially the same as that in Leith (1971). We take a 
logarithmic subdivision of the k axis 

lc, N 2LIF. (3.1) 

Such a logarithmic subdivision has the consequence that, because isosceles inter- 
actions (k = q,p = (I, k = p )  in the model equation are zero for two-dimensional 
turbulence, the numerical calculation of double integrals in the p ,  q plane cuts o f f  
all the 'non-local' interactions such that the ratio of the smallest to the middle 
wavenumber in the interacting triad (k, p ,  q) is less than a = 21IF - 1 (equal to 
0.19 when F = 4). We know from the work of Kraichnan (1971 b) ,  however, that 
non-local interactions are responsible for most of the enstrophy transfer. 

The &st method to take into account non-local interactions was proposed by 
Leith & Kraichnan (1972), who used a much more refined discretization of wave- 
numbers for small values ofplk and qlkin the interacting triad. Here we introduce 
a method based on the expansion of the nonlinear term of the spectral equation 
(2 .1) ,  which is now rewritten as 

(a/at+2yk2)E(k,t)-P(k) = T ( k , t )  = T,(k , t )+T!L(k, t ) ,  ( 3 - 2 )  
t This result has been established by Bardos & Frisch (1974) for the spatially periodic 

case. 
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where TL and TNL stand for the local and non-local contribution to the transfer 
function. There are two classes of non-local interactions : 

(i) q < p  k, p < q k, 
(ii) k < p w q. 

As shown by Kraichnan (I971 b) ,  the dominant contribution comes from the first 
class; a suitable expansion in powers of a then gives to leading order 

At this point a problem arises with energy conservation. It is essential to have a 
numerical scheme which conserves exactly both energy and enstrophy (otherwise 
cascade phenomena are easily lost, as, for example, in Dupree 1974). The local 
term TL has exact conservation properties because exact conservation holds for 
each triad (Kraichnan 1967); this property is preserved in Leith's numerical 
scheme (within rounding errors). The non-local term TNL, however, does not have 
all the right conservation properties. This is because detailed conservation re- 
quires the inclusion of terms which are not of the same order in a. The fact that 
TXL(k, t) nevertheless has exa,ct enstrophy conservation [easily checked in 
(3 .3 ) ]  is due to pathological behaviour of two-dimensional turbulent viscosities, 
which are known to be zero to leading order (Kraichnan 1975). Exact energy 
conservation may be achieved without including explicitly class (ii) interactions 
by replacing TNL with 

which, because of the logarithmic behaviour of the integral in the enstrophy 
cascade, introduces a relative error of order (log k)-l. After these remarks, we 
are led to use instead of (3 .2 )  the equation 

(a/at+ 2 ~ 1 % ~ )  E(k ,  t) -F(k )  = TL + T&L. (3.5) 

It can be checked analytically that in the limit of infinite Reynolds number 
(3.5) has steady solutions of the form given by Kraichnan (197 1 b )  : 

E (k) = 4.1 9hf,8%-3 {log ( k / k l ) ) d  for k $ kI, (3.6) 

with p = 1 k26(k )  dk. 
0 

For such solutions the local enstrophy transfer is negligible. It is not entirely clear 
how k, should be chosen in (3.6). There is no reason why k, should be equal 
to the injection wavenumber k, since the form (3.6) of the spectrum holds only 
for k 9 k,. In principle k, can be determined by fitting (3.6) to the result of a high 
Reynolds number numerical calculation but this gives rather poor accuracy 
unless extremely high Reynolds numbers (of the order of 1020) are used. There 
are indications that k, is smaller than k, by a factor of 102-103. As for the adjust- 
able constant h appearing in (1.3)) we have taken the value 0.376 by not.ing 
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that the enstrophy inertial range has a Kolmogorov constant given by 

c' = 4-19h8, (3 .7)  
which we have fitted to the value derived by Leith & Kraichnan (1972) from the 
test-field model.? 

4. Numerical results 
We carried out a numerical integration of (3.5) both for the free evolution of 

a given initial energy spectrum and for the case of turbulence driven by external 
forces, The numerical scheme used for ThL is described in the appendix. In all 
the following calculations we take F = 4. 

Time evolution of an  initial state 

We integrated (3.5) numerically with F(k)  = 0 and the initial condition 

E(k,  0) - k3exp -{g(k/kI)2). (4.1) 
In  order to estimate approximately the viscous cut-off wavenumber kD in the 
numerical integration, we proceed as follows: assuming a km3 inertial range ex- 
tending from kI to k, in the energy spectrum, we can write the enstrophy dis- 
sipation rate p( t )  as 

P(t) = ZvSo,k4E(k,t)dk - q r n k 4 ( / 3 ( t ) ) t k - 3 d k  0 - (P(t))"%v. (4.2) 

On the other hand, if the viscosity is small enough the enstrophy D(t)  is not far 
below its initial value D(O), so that we have 

Eliminating P(t) between relations (4.2) and (4.3) we find 

D( 0) - k$ Y2 log (kD/kI) .  (4.4) 

The logarithmic factor log (kD/kI)  is of order one and the initial enstrophy D(0) 
is of order k?(u2(0)), so that (4.4) becomes 

(kD/k1)2 ((u2(0)))B/vkT = R, (4.5) 

where R is the large-scale Reynolds number. 

number R = 2.4 x 107 are presented in figure 1. The units are kI for k, 
The results of numerical integration of (3.5) without forcing at  a Reynolds 

{((.2(o)>)* kI1-l 

for t and (u2(0))/kI for E ( k ,  t ) .  Log E(k, t )  is plotted vs. logk for times t = 0, 
400 and 1200. 

t With our definition of the energy spectrum, 

(d) = E ( k ) d k ,  

our Kolmogorov constant must be multiplied by 2-5 to get the value of 1.74 given by 
Leith & Kraichnan (1972). 
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k 

FIGURE 1. Free evolution of the energy spectrum without forcing. Initial spectrum 
E ( k ,  0) N ksexp{ - % ( k / k r ) 2 } .  Reynolds number R = 2.4 x lo7. 
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t 

FIaumz 2. Variation of total energy E = (u2), total enstrophy D = ((curl u)z) and total 
palinstrophy P = ((curl curl u ) ~ )  in arbitrary units for two-dimensional turbulence with 
the same initial conditions as in figure 1. 

We first notice that there is a backward flux of energy towards low wave- 
numbers. Second, we see clearly the formation of a k-3 enstrophy-cascading 
inertial range extending for t = 1200from k = 2-%0 k = 29. It must be emphasized 
that in the limit of zero viscosity we cannot expect a k-3 enstrophy cascade 
(even corrected by a logarithmic factor) extending to infinity: indeed this would 
imply an infinite total enstrophy, which is not possible in the unforced case 
since enstrophy is bounded above hy its initial value, 
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t 

FIGURE 3. variation of total energy and total enstrophy for three-dimensional turbulence 
in the limit of infinite Reynolds number. Notice the onset of ‘inviscid dissipation’ after t,  
(taken from Lesieur 1973). 
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1 10 100 1000 

t 

FIGURE 4. Variation of the skewness factor as a function of time for different values of the 
Reynolds number, Curve 1, R = lo4; curve 2, R = 2.6 x lo5; curve 3, R = 2.4 x lo7. 
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Figure 2 shows the variation of the total energy, enstrophy and palinstrophy; 
as expected from the results of 3 2, energy and enstrophy remain practically con- 
stant while the palinstrophy has an exponential growth limited only by viscosity. 
For comparison, figure 3 shows typical behaviour of the energy and enstrophy 
for three-dimensional inviscid turbulence (Lesieur 1973). 

Figure 4 shows the two-dimensional skewness factor, as defined by Herring 
et al. (1974), 

fi,(t) = k4T(k, t )  dk/P(t)  D(t)*, (4.6) 
/om 

where T(k, t )  is the right-hand side of ( 3 4 ,  for R = lo4, 2.6 x lo5 and 2.4 x lo7. 
One sees that, at t = 1000, fi,(t) has reached a steady value close to 0-6, which 
increases slowly with Reynolds number. Notice that this value? is about twice the 
low Reynolds number skewness factors computed by Herring et al. (1974). 

Turbulence driven by external forces 
In  the preceding case, it was not possible to obtain an inverse k-8 energy inertial 
range because there was no energy input into the system. Now we are going to 
consider the case where there is a forcing term P(k) in ( 3 4 ,  whose effect is to 
inject energy and enstrophy in a narrow band in the neighbourhood of the wave- 
number le1 at given rates E and /? = k;s. From preceding results on free turbulence 
and phenomenological predictions, one may foresee that enstrophy will cascade 
to large Ic and that the part of the spectrum corresponding to Ic > kI will quickly 
become steady with an enstrophy dissipation rate equal to the injection rate p .  
Energy, which cannot be significantly transferred towards large k, will then 
cascade backwards according to a 7c-* law. At time t ,  the total energy will be 
st + (u2(0)), and the excitation will have reached a wavenumber kmin(t) approxi- 
mately given by 

E t  + (Uyo) )  /'" E#k+zk. 
kmin (0 

For large t ,  we have ( ~ ~ ( 0 ) )  < st and k, $ kmin(t), so that (4.7) becomes 

kmin(t) N (st"-&. 

(4.7) 

Figure 5 shows the temporal evolution of the spectrum E(Ic, t )  for R = 2.4 x lo7 
a t  times t = 0,100,1000 and 3000 (the computing time was 1400 s on a CDC 7600 
machine). We see very clearly that a steady k3 enstrophy cascade extending 
from k = 2, to 7c = 21° is rapidly established, and that energy goes back towards 
small k across a Ic8 inverse cascade. At t = 3000, the k-8 cascade extends from 
k = 2-1 to k = W .  The corresponding energy Kolmogorov constant is found to 
be 10 % less than the value determined by Kraichnan (1971b) from the test- 
field model. This shows that the model used here gives slightly different results 
from the test-field model and that it is not possible to adjust h to recover exactly 
both Kolmogorov constants of the test-field model. If we integrated for longer 

t To be consistent with the notation of Herring et al. (1974) we must multiply our 
skewness factor by 21, which gives a value of 0.85. 
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k 

FIGURE 5. Quasi-steady energy spectrum E(k,  t )  for t = 100, 1000 and 3000 corresponding 
to an injection spectrum constant in a half-octave band around k l  = 1 with injection rates 
E = 0.03 and p = 0.03. Reynolds number R = 2.4 x 10'. 

FIGURE 6. Quasi-steady energy transfer rate n ( k ,  t )  and enstrophy transfer rates Z(k, 1)  
and Z,,(k, t )  for t = 1000 and 3000; same conditions as in figure 5. 
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times, the numerical results would no longer be significant for small k,  since 
energy would accumulate on the lower k cut-off klow instead of feeding progres- 
sively the infinite space left under the k-4 spectrum. In  that case (klow =k 0) this 
accumulation does not continue for ever and the total energy is easily shown to 
be bounded by noticing that its time derivative is less than 8 - 2vkf0, (u2(t)) and 
integrating. 

Figure 6 shows for times t = 1000 and 3000 the transfer rate of the energy, 

the transfer rate of the enstrophy, 
P m  

and the ‘non-local ’ enstrophy transfer rate 

(4.9) 

(4.10) 

(4.11) 

Fort = 3000, as expected, the energy transfer rate II(k, t )  is negative in the inverse 
energy cascade and vanishes in the direct enstrophy cascade, while the enstrophy 
transfer rate vanishes for k < k, and is positive in the enstrophy cascade; in the 
inverse energy cascade, n ( k )  remains constant to within less than 1 % for 
2-5 6 k < 1 ,  whereas in the enstrophy cascade Z ( k )  remains constant to within 
less than 1 yo for 1 < k < 2s. The sharp discontinuity in the energy and enstrophy 
transfer a t  kI seen in figure 6 is probably due to the forcing term, which is 
sharply peaked near kI.  One can check that most of the enstrophy transfer comes 
from non-local interactions. It would be tempting to neglect the local term TL 
in the spectral equation and keep only the non-local term TA,, but this is not 
possible for small values of k (s kI)  since then the non-local term is negligible 
and does not transfer energy and enstrophy. Furthermore it may be shown (Her- 
ring, private communication) that such a spectral equation would lead in the 
unforced case to a k-2 energy spectrum. Notice finally that the skewness factor 
in this experiment is 0-57 and that the Reynolds number of this numerical cal- 
culation is too small to exhibit clearly the logarithmic correction to the k-3 range. 

5. Conclusion 
Kraichnan’s hypotheses (direct enstrophy cascade and inverse energy cascade) 

concerning two-dimensional isotropic turbulence have always been much de- 
bated (e.g. Saffman 1971), and neither cascade has been clearly demonstrated, 
either numerically or experimentally, although Kolesnikov & Tsinober (1972) 
claim that a flow of mercury imbedded in a sufficiently strong magnetic field 
becomes two-dimensional and displays both k-8 and k-3 inertial ranges; also, in 
the atmosphere, where the k-3 law seems to fit observations (Wiin-Nielsen 1967; 
Desbois 1974; Morel & LarchevCque 1974; Morel & Necco 1973), the energy- 
containing eddies are of the same order of magnitude as large-scale eddies which 
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dissipate energy by friction with the surface layer, and therefore there is not a 
wide enough range for the inverse cascade to establish itself. On the other hand, 
the direct numerical simulations of Lilly (1969, 1972) and Herring et al. (1974) 
show a tendency to establish both cascades, but such calculations are severely 
restricted by the capacity of computers. Since at  present direct numerical sim- 
ulation of turbulence at very high Reynolds number is impossible, it seems that 
the best way to get insight into the dynamics is to work with stochastic models. 

After the work of Kraichnan (1971b) and Leith (1971) and the results of the 
present paper, the existence of the two cascades seems now to be clearly estab- 
lished for the class of Markovian eddy-damped theories: in these models the 
dynamics of two-dimensional turbulence are fairly well understood. The struc- 
tural similarity between the stochastic models and the Navier-Stokes equations 
and the good agreement of test-field-model results with low Reynolds number 
direct numerical simulations (Herring et al. 1974) give strong arguments in favour 
of Kraichnan's hypothesis. Nevertheless, stochastic models differ from the two- 
dimensional Navier-Stokes equations in two essential points: they do not con- 
serve the mean values of all powers of thevorticity, contrary to the original 
Euler equations, and they suppress intermittency. It seems, however, that 
intermittency does not affect the energy spectrum in the enstrophy cascade 
(Kraichnan 1975). 

The authors are grateful t o  U.Frisch, J.R.Herring, C.E.Leith and P.L. 
Suleni for very helpful comments, and to P. Morel, who suggested this work. 

Appendix 
Let us write T&,(k) in the form 

where 

J O  

The differential operator alak is approximated by the finite-difference operator 6: 

with a = 2llW. Then the scheme for TLL reads 

where 
TLdk,) = (c/8ko) {a4$(aak0) - (a4+ 1) $(W + $(a-2ko)l, (A41 

c = a-2(a-a-1)-2. (A 5 )  

It can be easily checked that this scheme conserves both energy and enstrophy. 
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